Link/Page Citation
Introduction
The flavones ring (2-phenyl-4H-1-benzopyran-4-one) constitutes alarge segment of natural products. Currently the synthesis of flavonesand their derivatives have attracted considerable attention due to theirsignificant biochemical and pharmacological activities which arebeneficial for human health [1], including biocidal [2], antioxidant[3], anti-cancer [4], anti-inflammatory [5] and anti-diabetic effects[6]. A number of flavones derivatives carrying a methoxy group at C-3position and a hydroxyl group at C-5 position are found to beanti-cancer and anti-viral agents [7, 8]. In view of these observationsand in continuation of our work on the chemistry of[alpha]-(3-flavonyloxy)-[omega]-bromoalkane [9] derivatives andtherapeutic potential of flavonoids for making valuable targets for drugdesign [10-16], it was considered of interest to report the synthesis ofsome novel potentially bioactive 3-[[omega]-(substitutedphenoxy/anilino/thiophenoxy/2-pyridyl amino alkoxy] flavones (3a-t,4a-h, 5a-d, 7a-c) in this paper (Scheme 1).
[FORMULA NOT REPRODUCIBLE IN ASCII]
Material and Methods
All melting points were taken in open capillaries and areuncorrected. Purity of the samples was checked by TLC using silica gel-Gplates using ethyl acetate-benzene (9:1, v/v) or benzene alone assolvent systems. Visualization of spots was done in iodine chamber or byspraying with aq. [H.sub.2]S[O.sub.4] (10%). IR spectra (KBr) wererecorded on DIGILAB FTS-14 or Perkin-Elmer 157 P spectrophotometer([v.sub.max] in [cm.sup.-1]). [sup.1]H NMR spectra were recorded inCD[Cl.sub.3] on a Varian CFT-20 and Brucker DRX-300 (300 MHz)spectrometer using TMS as internal standard (chemical shifts in [delta],ppm). All compounds gave satisfactory elemental analysis. Synthesis of[alpha]-(3-flavonyloxy)-[omega]-bromoalkanes (1) was carried out asreported in our earlier communications [9].
General procedure for the synthesis of 3-[o)-(substitutedphenoxy/thiophenoxy/alkoxy]-flavones (3a-t and 5a-d).
A mixture of [alpha]-flavonyloxy-[omega]-bromoalkane (0.01 mol),phenol/thiophenol (0.01 mol) and anhydrous potassium carbonate (0.02mol) in dry acetone (100 mL) was refluxed (8-10 h) till the completionof the reaction (TLC). The solvent was distilled off under reducedpressure and the residue was triturated with dill NaOH and then withwater (3 x 50 mL). The separated solid was filtered, dried andrecrystalization with proper solvent afford as the analytical samples(Table 1).
Analytical data
3a: IR (KBr) v/[cm.sup.-1] 1640 (C = O), 1260 (asym C-O-C), 1040(sym C-O-C). [sup.1] NMR (CDCl3, 300 mHz): [[delta].sub.H] 2.11 (2H, t,-C[H.sub.2]-), 2.45 (3H, s, C[H.sub.3]), 3.45 (3H, s,4'-OC[H.sub.3]), 4.29 (4H, t, 2x -OC[H.sub.2]-), 7.31-7.64 (11H, m,Ar-H).
3b: IR (KBr) v/[cm.sup.-1] 1640 (C = O), 1265 (asym C-O-C), 1040(sym C-O-C). [sup.1] NMR (CDCl3, 300 mHz): [[delta].sub.H] 2.14 (2H, t,-C[H.sub.2]-), 2.43 (3H, s, C[H.sub.3]), 3.44 (3H, s,4'-OC[H.sub.3]), 4.26 (4H, t, 2x -OC[H.sub.2]-), 7.35-7.74 (11H, m,Ar-H).
3c: IR (KBr) v/[cm.sup.-1] 1640 (C = O), 1260 (asym C-O-C), 1040(sym C-O-C). [sup.1] NMR (CDCl3, 300 mHz): [[delta].sub.H] 2.13 (2H, t,-C[H.sub.2]-), 2.45 (3H, s, C[H.sub.3]), 3.45 (3H, s,4'-OC[H.sub.3]), 4.15 (4H, t, 2x -OC[H.sub.2]-), 6.89-8.08 (11H, m,Ar-H).
3d: IR (KBr) v/[cm.sup.-1] 1640 (C = O), 1260 (asym C-O-C), 1040(sym C-O-C). [sup.1] NMR (CDCl3, 300 mHz): [[delta].sub.H] 2.13 (2H, t,-C[H.sub.2]-), 2.48 (3H, s, C[H.sub.3]), 3.47 (3H, s,4'-OC[H.sub.3]), 4.16 (4H, t, 2x -OC[H.sub.2]-), 7.02-8.14 (11H, m,Ar-H).
3e: IR (KBr) v/[cm.sup.-1] 1640 (C = O), 1260 (asym C-O-C), 1040(sym C-O-C). [sup.1] NMR (CDCl3, 300 mHz): [[delta].sub.H] 2.12 (2H, t,-C[H.sub.2]-), 3.77 (3H, s, 2x-OC[H.sub.3]), 4.18 (4H, t, 2x -OC[H.sub.2]), 6.89-7.88 (11H, m, Ar-H).
3f: IR (KBr) v/[cm.sup.-1] 1640 (C = O), 1260 (asym C-O-C), 1040(sym C-O-C). [sup.1] NMR (CDCl3, 300 mHz): [[delta].sub.H] 2.11 (2H, t,-C[H.sub.2]-), 3.77 (3H, s, 2x-OC[H.sub.3]), 4.29 (4H, t, 2x -OC[H.sub.2]), 7.31-7.68 (11H, m, Ar-H).
3g: IR (KBr) v/[cm.sup.-1] 1640 (C = O), 1260 (asym C-O-C), 1040(sym C-O-C). [sup.1] NMR (CDCl3, 300 mHz): [[delta].sub.H] 2.14 (2H, t,-C[H.sub.2]-), 3.79 (3H, s, 2x-OC[H.sub.3]), 4.29 (4H, t, 2x -OC[H.sub.2]), 7.28-7.64 (11H, m, Ar-H).
3h: IR (KBr) v/[cm.sup.-1] 1640 (C = O), 1260 (asym C-O-C), 1040[cm.sup.-1] (sym C-O-C). [sup.1] NMR (CDCl3, 300 mHz): [[delta].sub.H]2.18 (2H, t, -C[H.sub.2]-), 3.77 (3H, s, 2x-OC[H.sub.3]), 4.22 (4H, t,2x - OC[H.sub.2]), 7.22-7.78 (11H, m, Ar-H).
3i: IR (KBr) v/[cm.sup.-1] 1640 (C = O), 1260 (asym C-O-C), 1040(sym C-O-C). [sup.1] NMR (CDCl3, 300 mHz): [[delta].sub.H] 1.79 (4H, m,2x-C[H.sub.2]-), 2.49 (3H, s, C[H.sub.3]), 3.79 (3H, s,4'-OC[H.sub.3]), 4.29 (4H, t, 2x -OC[H.sub.2]-), 6.98-7.99 (11H, m,Ar-H).
3j: IR (KBr) v/[cm.sup.-1] 1640 (C = O), 1260 (asym C-O-C), 1040(sym C-O-C). [sup.1] NMR (CDCl3, 300 mHz): [[delta].sub.H] 1.76 (4H, m,2x-C[H.sub.2]-), 2.46 (3H, s, C[H.sub.3]), 3.79 (3H, s,4'-OC[H.sub.3]), 4.29 (4H, t, 2x -OC[H.sub.2]-), 6.98-7.94 (11H, m,Ar-H).
3k: IR (KBr) v/[cm.sup.-1] 1640 (C = O), 1260 (asym C-O-C), 1040(sym C-O-C). [sup.1] NMR (CDCl3, 300 mHz): [[delta].sub.H] 1.89 (4H, m,2x-C[H.sub.2]-), 2.48 (3H, s, C[H.sub.3]), 3.77 (3H, s,4'-OC[H.sub.3]), 4.16 (4H, t, 2x -OC[H.sub.2]-), 7.02-7.98 (11H, m,Ar-H).
3l: IR (KBr) v/[cm.sup.-1] 1640 (C = O), 1260 (asym C-O-C), 1040(sym C-O-C). [sup.1] NMR (CDCl3, 300 mHz): [[delta].sub.H] 1.80 (4H, m,2x-C[H.sub.2]-), 2.48 (3H, s, C[H.sub.3]), 3.89 (3H, s,4'-OC[H.sub.3]), 4.01 (4H, t, 2x -OC[H.sub.2]-), 6.80-8.20 (11H, m,Ar-H).
3m: IR (KBr) v/[cm.sup.-1] 1640 [cm.sup.-1] (C = O), 1260 (asymC-O-C), 1040 (sym C-O-C). [sup.1] NMR (CDCl3, 300 mHz): [[delta].sub.H]1.88 (6H, m, 3x-C[H.sub.2]-), 2.48 (3H, s, C[H.sub.3]), 3.80 (3H, s,4'-OC[H.sub.3]), 4.19 (4H, t, 2x -OC[H.sub.2]-), 6.92-7.98 (11H, m,Ar-H).
3n: IR (KBr) v/[cm.sup.-1] 1640 (C = O), 1260 (asym C-O-C), 1040(sym C-O-C). [sup.1] NMR (CDCl3, 300 mHz): [[delta].sub.H] 1.64 (6H, m,3x-C[H.sub.2]-), 2.49 (3H, s, C[H.sub.3]), 3.77 (3H, s,4'-OC[H.sub.3]), 4.10 (4H, t, 2x -OC[H.sub.2]-), 7.02-7.68 (11H, m,Ar-H).
3o: IR (KBr) v/[cm.sup.-1] 1640 [cm.sup.-1] (C = O), 1260 (asymC-O-C), 1040 (sym C-O-C). [sup.1] NMR (CDCl3, 300 mHz): [[delta].sub.H]1.82 (6H, m, 3x-C[H.sub.2]-), 2.46 (3H, s, C[H.sub.3]), 3.78 (3H, s,4'-OC[H.sub.3]), 4.27 (4H, t, 2x -OC[H.sub.2]-), 7.02-7.68 (11H, m,Ar-H).
3p: IR (KBr) v/[cm.sup.-1] 1640 (C = O), 1260 (asym C-O-C), 1040(sym C-O-C). [sup.1] NMR (CDCl3, 300 mHz): [[delta].sub.H] 1.20-1.90(6H, m, 3x-C[H.sub.2]-), 2.45 (3H, s, C[H.sub.3]), 3.85 (3H, s,4'OC[H.sub.3]), 4.10 (4H, t, 2x -OC[H.sub.2]-), 6.82-7.96 (11H, m,Ar-H).
3q: IR (KBr) v/[cm.sup.-1] 1640 (C = O), 1260 (asym C-O-C), 1060(sym C-O-C). [sup.1] NMR (CDCl3, 300 mHz): [[delta].sub.H] 1.10-1.80(8H, m, 4x-C[H.sub.2]-), 2.46 (3H, s, C[H.sub.3]), 3.75 (3H, s,4'OC[H.sub.3]), 4.02 (4H, t, 2x -OC[H.sub.2]-), 6.78-7.98 (11H, m,Ar-H).
3r: IR (KBr) v/[cm.sup.-1] 1640 (C = O), 1260 (asym C-O-C), 1060(sym C-O-C). [[delta].sub.H] 1.20-1.92 (8H, m, 4X-C[H.sub.2]-), 2.42(3H, s, C[H.sub.3]), 3.79 (3H, s, 4'-OC[H.sub.3]), 4.29 (4H, t, 2x-OC[H.sub.2]-), 6.38-7.92 (11H, m, Ar-H).
3s: IR (KBr) v/[cm.sup.-1] 1640 (C = O), 1260 (asym C-O-C), 1060(sym C-O-C). [sup.1] NMR (CDCl3, 300 mHz): [[delta].sub.H] 1.76 (8H, m,4x-C[H.sub.2]-), 2.46 (3H, s, C[H.sub.3]), 3.76 (3H, s,4'-OC[H.sub.3]), 4.49 (4H, t, 2x -OC[H.sub.2]-), 6.64-7.98 (11H, m,Ar-H).
3t: IR (KBr) v/[cm.sup.-1] 1640 (C = O), 1260 (asym C-O-C), 1060(sym C-O-C). [sup.1] NMR (CDCl3, 300 mHz): [[delta].sub.H] 1.10-1.80(8H, m, 4x-C[H.sub.2]-), 2.46 (3H, s, C[H.sub.3]), 3.75 (3H, s,4'-OC[H.sub.3]), 4.02 (4H, t, 2x -OC[H.sub.2]-), 6.78-7.98 (11H, m,Ar-H).
5a: IR (KBr) v/[cm.sup.-1] 1640 (C = O), 1240 (asym C-O-C), 1040(sym C-O-C). [sup.1] NMR (CDCl3, 300 mHz): [[delta].sub.H] 2.20 (2H, m,-C[H.sub.2]-), 2.95 (2H, t, -C[H.sub.2]S-), 3.80 (3H, s, 4'-OC[H.sub.3]), 4.25 (2H, t, -OC[H.sub.2]-), 6.70-8.04 (8H, m, Ar-H).
5b: IR (KBr) v/[cm.sup.-1] 1640 (C = O), 1240 (asym C-O-C), 1040(sym C-O-C). [sup.1] NMR (CDCl3, 300 mHz): [[delta].sub.H] 2.26 (2H, m,-C[H.sub.2]-), 3.10 (2H, t, -C[H.sub.2]S-), 3.84 (3H, s, -OC[H.sub.3]),4.26 (2H, t, 2x -OC[H.sub.2]-), 6.68-7.29 (8H, m, Ar-H).
5c: IR (KBr) v/[cm.sup.-1] 1640 (C = O), 1250 (asym C-O-C), 1035(sym C-O-C). [sup.1] NMR (CDCl3, 300 mHz): [[delta].sub.H] 1.70 (4H, m,2x-C[H.sub.2]-), 2.80 (2H, t, -C[H.sub.2]S-), 3.79 (3H, s, -OC[H.sub.3]), 4.29 (2H, t, 2x -OC[H.sub.2]-), 6.68-8.00 (8H, m, Ar-H).
5d: IR (KBr) v/[cm.sup.-1] 1640 (C = O), 1250 (asym C-O-C), 1035(sym C-O-C). [sup.1] NMR (CDCl3, 300 mHz): [[delta].sub.H] 1.75 (4H, m,2x-C[H.sub.2]-), 3.02 (2H, t, -C[H.sub.2]S-), 3.82 (3H, s, -OC[H.sub.3]), 4.19 (2H, t, 2x -OC[H.sub.2]-), 6.68-7.98 (8H, m, Ar-H).
General Procedure for Synthesis of 3-[[omega]-(substituted anilino(4a-h)/(2-pyridyl amino (7a-c) alkoxy]-flavones.
Equimolar mixture of 3-([omega]-bromoalkoxy)-substituted flavoneand substituted aniline/2-aminopyridine were refluxed in ethanol (100mL) for 10-12 h. Completion of the reaction was monitored by TLC. Thereaction mixture on concentration under reduced pressure result asemisolid mass which on repeated crystallization with proper solventsresulted the analytical samples (Table 1).
Analytical data
4a: IR (KBr) v/[cm.sup.-1] 3350 (NH), 1630 (C = O), 1260 (asymC-O-C), 1020 (sym C-O-C). [sup.1] NMR (CDCl3, 300 mHz): [[delta].sub.H]1.86 (2H, t, -C[H.sub.2]-), 4.27 (2H, t, -OC[H.sub.2]-), 3.41 (2H, m, -NHC[H.sub.2]-), 4.15 ([sup.1], s, NH), 3.84 (3H, s, -OC[H.sub.3]),6.85-7.78 (8H, m, Ar-H).
4b: IR (KBr) v/[cm.sup.-1] 3350 (NH), 1630 (C = O), 1260 (asymC-O-C), 1020 (sym C-O-C). [sup.1] NMR (CDCl3, 300 mHz): [[delta].sub.H]1.89 (2H, t, -C[H.sub.2]-), 4.16 (2H, t, -OC[H.sub.2]-), 3.45 (2H, m,NH- C[H.sub.2]-), 4.10 ([sup.1], s, NH), 3.77 (3H, s, -OC[H.sub.3]),7.38-8.00 (8H, m, Ar-H).
4c: IR (KBr) v/[cm.sup.-1] 3350 (NH), 1630 (C = O), 1260 (asymC-O-C), 1020 (sym C-O-C). [sup.1] NMR (CDCl3, 300 mHz): [[delta].sub.H]2.10 (2H, t, -C[H.sub.2]-), 4.10 (2H, t, -OC[H.sub.2]-), 3.40 (2H, m, -NHC[H.sub.2]-), 5.0 ([sup.1], s, NH), 3.91 (3H, s, -OC[H.sub.3]),6.35-7.78 (8H, m, Ar-H).
4d: IR (KBr) v/[cm.sup.-1] 3350 (NH), 1630 (C = O), 1260 (asymC-O-C), 1020 (sym C-O-C). [sup.1] NMR (CDCl3, 300 mHz): [[delta].sub.H]2.10 (2H, t, -C[H.sub.2]-), 4.10 (2H, t, -OC[H.sub.2]-), 3.40 (2H, m, -NHC[H.sub.2]-), 4.20 ([sup.1], s, NH), 3.79 (3H, s, -OC[H.sub.3]), 3.32(3H, s, 4'-OC[H.sub.3]), 6.85-7.78 (8H, m, Ar-H).
4e: IR (KBr) v/[cm.sup.-1] 3350 (NH), 1630 (C = O), 1260 (asymC-O-C), 1020 (sym C-O-C). [sup.1] NMR (CDCl3, 300 mHz): [[delta].sub.H]1.85 (4H, t, 2x-C[H.sub.2]-), 4.29 (2H, t, -OC[H.sub.2]-), 3.34 (2H, m,NH-C[H.sub.2]-), 4.36 ([sup.1], s, NH), 3.86 (3H, s, -OC[H.sub.3]),6.68-8.02 (8H, m, Ar-H). Ameta et al.
4f: IR (KBr) v/[cm.sup.-1] 3350 (NH), 1630 (C = O), 1260 (asymC-O-C), 1020 (sym C-O-C). [sup.1] NMR (CDCl3, 300 mHz): [[delta].sub.H]1.48 (4H, t, 2x-C[H.sub.2]-), 4.26 (2H, t, -OC[H.sub.2]-), 3.30 (2H, m,NH- C[H.sub.2]-), 4.39 ([sup.1], s, NH), 3.84 (3H, s, -OC[H.sub.3]),6.58-8.00 (8H, m, Ar-H).
4g: IR (KBr) v/[cm.sup.-1] 3350 (NH), 1630 (C = O), 1260 (asymC-O-C), 1020 (sym C-O-C). [sup.1] NMR (CDCl3, 300 mHz): [[delta].sub.H]1.45 (4H, t, 2x-C[H.sub.2]-), 4.22 (2H, t, -OC[H.sub.2]-), 3.30 (2H, m,NH- C[H.sub.2]-), 4.37 ([sup.1], s, NH), 3.78 (3H, s, -OC[H.sub.3]),6.68-7.98 (8H, m, Ar-H).
4h: IR (KBr) v/[cm.sup.-1] 3350 (NH), 1630 (C = O), 1260 (asymC-O-C), 1020 (sym C-O-C). [sup.1] NMR (CDCl3, 300 mHz): [[delta].sub.H]1.45 (4H, t, 2x-C[H.sub.2]-), 4.26 (2H, t, -OC[H.sub.2]-), 3.30 (2H, m,NH- C[H.sub.2]-), 4.39 ([sup.1], s, NH), 3.84 (3H, s, -OC[H.sub.3]),6.68-7.99 (8H, m, Ar-H).
7a: IR (KBr) v/[cm.sup.-1] 3400-3100 (broad NH) hydrobromide, 1660(C = O), 1260 (asym CO-C), 1030 (sym C-O-C). [sup.1] NMR (CDCl3, 300mHz): [[delta].sub.H] 1.90 (2H, m, C[H.sub.2]-), 4.01 (2H, t,OC[H.sub.2]-), 3.61 (2H, m, -NH-C[H.sub.2]-), 5.40 ([sup.1], s, NH),3.79 (3H, s, 4'-OC[H.sub.3]), 2.48 (3H, s, C[H.sub.3]), 6.81-7.94(11H, m, Ar-H).
7b: IR (KBr) v/[cm.sup.-1] 3400-3100 (broad NH) hydrobromide, 1660(C = O), 1260 (asym CO-C), 1030 (sym C-O-C). [sup.1] NMR (CDCl3, 300mHz): [[delta].sub.H] 1.48 (4H, m, 2xC[H.sub.2]-), 4.29 (2H, t,OC[H.sub.2]-), 3.46 (2H, m, -NH-C[H.sub.2]-), 5.40 ([sup.1], s, NH),3.79 (3H, s, 4'-OC[H.sub.3]), 2.46 (3H, s, C[H.sub.3]), 6.81-7.98(11H, m, Ar-H).
7c: IR (KBr) v/[cm.sup.-1] 3400-3100 (broad NH) hydrobromide, 1660(C = O), 1260 (asym C O-C), 1030 (sym C-O-C). [sup.1] NMR (CDCl3, 300mHz): [[delta].sub.H] 1.18-1.80 (6H, m, 3x-C[H.sub.2]-), 4.20 (2H, t,-OC[H.sub.2]-), 3.42 (2H, m, -NH-C[H.sub.2]-), 5.20 ([sup.1], s, NH),3.80 (3H, s, 4'-OC[H.sub.3]), 2.43 (3H, s, C[H.sub.3]), 6.90-8.20(11H, m, Ar-H).
Results and Discussion
The starting material [alpha]-(3-flavonyloxy)-[omega]-bromoalkane(1) (n = 1-4) was prepared by literature methods reported by us [9-11].Reaction of compound 1 with different para-substituted phenols (2, X =O, [R.sub.2] = H, Cl, Br or N[O.sub.2]) anilines (2, X = NH, [R.sub.2] =H, Cl, Br or N[O.sub.2]) thiophenols (2, X = S, [R.sub.2] = H or Cl)resulted phenoxy derivatives (3a-t), anilino derivatives (4a-h) andthiophenoxy derivatives (5a-d) where as reaction of 1 (n = 1-4) with2-amino pyridine (6) resulted compounds (7a-c) (Scheme 1). For thesynthesis of compounds 3a-t an equimolar mixture of the reactants 1 and2 was heated under reflux in dry acetone in the presence of anhydrouspotassium carbonate (8-10 h). The reaction products, after purificationfrom suitable solvents, afforded an analytically pure sample. Theinfrared spectra of these compound display characteristic absorptionband in the regions 1640-1620 (C = O), 1280-1240 (C-O-C, asym) and1060-1020 (C-O C, sym) [cm.sup.-1]. [sup.1] NMR of these compoundsshowed a multiplet in the range [delta] 1.10-2.3for--[(C[H.sub.2]).sub.n]-where (n = 1-4) and a triplet in the range[delta] 4.00-4.29 for (2X-OC[H.sub.2]-) confirming the presence ofpolymethylenedioxy group(-OC[H.sub.2]-[(C[H.sub.2]).sub.n]-OC[H.sub.2]-) in the resultantcompounds. Characteristic singlets for methyl and methoxy group protonsin the range [delta] 2.35-2.48 and [delta] 3.34-3.91 and aromatic ringprotons as multiplet in the range [delta] 6.60-7.40 and [delta]7.90-8.20 were also observed. Thiophenoxy derivatives (5a-d) were alsosimilarly prepared and characterized by their analytical and spectralresults. The synthesis of anilino (4a-h) and pyridyl amino derivatives(7a-c) was carried out by refluxing (8-10 h) the reactant 1 and parasubstituted anilines (2, X = NH) or 2-amino pyridines (6) in thepresence of ethanol as solvent. The analytical and spectral datasupported the proposed structures. Compounds (7a-c) were analyzed astheir hydro bromides. The characteristic IR stretching frequencies ofthese compounds are in the regions 3200-3100 (NH), 1660-1640 (CO),1610-1590 (C = C), 1270-1260 (C-O-C asym) and 1040-1020 (C-O-C sym)[cm.sup.-1].
Conclusion
In the present study we focused the synthesis of novel potentiallybioactive 3-[[omega]-(substituted phenoxy (3a-t)/anilino(4a-h)/thiophenoxy (5a-d)/2-pyridylamino (7a-c) alkoxy] flavones.
Acknowledgments
The authors thank the Head, Department of Chemistry, UniversityCollege of Science, M.L. Sukhadia University, Udaipur (Raj), India, forproviding necessary laboratory facilities, financial assistance fromCSIR and UGC to R.B.B. and R.S.S. respectively is also thankfullyacknowledged. Thanks are also due to the Director CDRI Lucknow (U.P) foranalytical and spectral data.
References
[1] Stavsteen, B. H. Pharmacology and Therapeutic 2002, 9B, 67.[CrossRef]
[2] Silva, A. M.; Borner, M. W.; Cavaleiro, J. A. S. Mycol. Res.1998, 102, 638. [CrossRef]
[3] Rice-Evans, C. Curr. Med. Chem. 2001, 8, 797. [PubMed]
[4] Leu, Y. I.; Ho, D. K.; Cassady, J. M.; Cook, V. M.; Baird, W.M. J. Nat. Prod. 1992, 55, 357. [CrossRef]
[5] Deo, T. T.; Chi, Y. S.; Kim, J.; Kim, H. P.; Kim, S.; Park, H.Bio-org. Med. Chem. Lett. 2004, 14, 1165. [CrossRef]
[6] Verma, S. D.; Kinoshita, J. H. Biochem. Pharmacol. 1976, 25,2505. [CrossRef]
[7] Das, N. P. In: Flavonoids in biology and medicine (NationalUniversity of Singapore Press Singapore). 1990, 403.
[8] Bittner, M.; Silva, M.; Vargan, J.; Bohlmann, F. Phytochemistry1983, 22, 1523. [CrossRef]
[9] Sodani, R. S.; Bhandari, R. B.; Verma, B. L. Chem. Ind.(London) 1987, 530.
[10] Sukhwal, S.; Ashawa, A.; Verma, B. L. Asian J. Chem. 1995, 7,615.
[11] Bhandari, R. B.; Sodani, R. S.; Chundawat, J. S.; Dulawat, S.S.; Verma, B. L. J. Indian Chem. Soc. 2006, 83, 1113.
[12] Sodani, R. S.; Chundawat, J. S.; Dulawat, S. S.; Verma, B. L.Indian. J. Heterocyclic Chem. 2007, 17, 145.
[13] Srivastava, Y. K.; Verma, B. L. J. Indian Council Chem. 1988,4, 1.
[14] Srivastava, Y. K.; Sukhwal, S.; Ashawa, A.; Verma, B. L. J.Indian Chem. Soc. 1997, 74, 573.
[15] Srivastava, Y. K.; Ameta, K. L.; Verma, B. L. Indian J.Heterocyclic Chem. 2002, 11, 279.
[16] Sodani, R. S.; Choudhary, P. C.; Sharma, H.; Verma, B. L. E.J. Chem. 2010, 7, 763.
K. L. Ameta (a), R. S. Sodani (b), R. B. Bhandari (b) and B. L.Verma (b) *
(a) Department of Chemistry, Faculty of Arts Science and Commerce,MITS University, Lakshmangarh, Rajasthan-332311, India.
(b) Department of Chemistry, University College of Science, MLSUniversity, Udaipur, Rajasthan-313001, India.
Received: 31 December 2011; revised: 15 March 2012; accepted: 07May 2012. Available online: 07 July 2012.
* Corresponding author. E-mail: [emailprotected]
Table 1. Characterization data of the synthesized compoundsCompd. n R [R.sub.1] [R.sub.2]3a 1 C[H.sub.3] H H3b 1 C[H.sub.3] H Cl3c 1 C[H.sub.3] H Br3d 1 C[H.sub.3] H N[O.sub.2]3e 1 H OC[H.sub.3] H3f 1 H OC[H.sub.3] Cl3g 1 H OC[H.sub.3] Br3h 1 H OC[H.sub.3] N[O.sub.2]3i 2 C[H.sub.3] H H3j 2 C[H.sub.3] H Cl3k 2 C[H.sub.3] H Br3l 2 C[H.sub.3] H N[O.sub.2]3m 3 C[H.sub.3] H H3n 3 C[H.sub.3] H Cl3o 3 C[H.sub.3] H Br3p 3 C[H.sub.3] H N[O.sub.2]3q 4 C[H.sub.3] H H3r 4 C[H.sub.3] H Cl3s 4 C[H.sub.3] H Br3t 4 C[H.sub.3] H N[O.sub.2]4a 1 H OC[H.sub.3] H4b 1 H OC[H.sub.3] Cl4c 1 H OC[H.sub.3] Br4d 1 H OC[H.sub.3] N[O.sub.2]4e 2 H OC[H.sub.3] H4f 2 H OC[H.sub.3] Cl4g 2 H OC[H.sub.3] Br4h 2 H OC[H.sub.3] N[O.sub.2]5a 1 H OC[H.sub.3] H5b 1 H OC[H.sub.3] Cl5c 2 H OC[H.sub.3] H5d 2 H OC[H.sub.3] Cl7a 1 C[H.sub.3] H --7b 2 C[H.sub.3] H --7c 3 H --Compd. Mol. Formula3a [C.sub.26][H.sub.24][O.sub.5] (416.0)3b [C.sub.26][H.sub.23][O.sub.5]Cl (450.5)3c [C.sub.26][H.sub.23][O.sub.5]Br (494.91)3d [C.sub.26][H.sub.23][O.sub.7]N (461.0)3e [C.sub.26][H.sub.24][O.sub.6] (432.0)3f [C.sub.26][H.sub.23][O.sub.6]Cl (466.50)3g [C.sub.26][H.sub.23][O.sub.6]Br (510.91)3h [C.sub.26][H.sub.23][O.sub.8]N (477.0)3i [C.sub.27][H.sub.26][O.sub.5] (430.0)3j [C.sub.27][H.sub.25][O.sub.5]Cl (464.5)3k [C.sub.27][H.sub.25][O.sub.5]Br (508.91)3l [C.sub.27][H.sub.25][O.sub.7]N (475.0)3m [C.sub.28][H.sub.28][O.sub.5] (444.0)3n [C.sub.28][H.sub.27][O.sub.5]Cl (478.5)3o [C.sub.28][H.sub.27][O.sub.5]Br (523.91)3p [C.sub.28][H.sub.27][O.sub.7]N (489.0)3q [C.sub.29][H.sub.30][O.sub.5] (458.0)3r [C.sub.29][H.sub.29][O.sub.5]Cl (492.5)3s [C.sub.29][H.sub.29][O.sub.5]Br (536.91)3t [C.sub.29][H.sub.29][O.sub.7]N (503.0)4a [C.sub.26][H.sub.25][O.sub.5]N (431.0)4b [C.sub.26][H.sub.24][O.sub.5]NCl (465.50)4c [C.sub.26][H.sub.24][O.sub.5]NBr (509.91)4d [C.sub.26][H.sub.24][O.sub.7][N.sub.2] (476.0)4e [C.sub.27][H.sub.27][O.sub.5]N (445.0)4f [C.sub.27][H.sub.26][O.sub.5]NCl (479.50)4g [C.sub.27][H.sub.26][O.sub.5]NBr (523.91)4h [C.sub.27][H.sub.26][O.sub.7][N.sub.2](490.00)5a [C.sub.26][H.sub.24][O.sub.5]S (448.0)5b [C.sub.26][H.sub.23][O.sub.5]SCl (482.50)5c [C.sub.27][H.sub.26][O.sub.5]S (462.00)5d [C.sub.27][H.sub.25][O.sub.5]SCl (496.50)7a [C.sub.25][H.sub.25][O.sub.4][N.sub.2]Br (496.91)7b [C.sub.26][H.sub.27][O.sub.4][N.sub.2]Br (510.91)7c [C.sub.27][H.sub.29][O.sub.4][N.sub.2]Br (524.91)Compd. [M.sub.p] Yield (%) Colour of ([degrees]C) crystals *3a 122 82 Colourless (1)3b 127 91 Yellow neddle (1)3c 134-135 60 Colourless (2)3d 144 82 Colourless (3)3e 115 87 Colourless (4)3f 120 65 Colourless (4)3g 103 52 Colourless (4)3h 118 72 Brown (4)3i 76 80 Light pink (4)3j 115-116 90 Pink (4)3k 94 75 Colourless (4)3l 161-162 90 Yellow (1)3m 77-78 80 Pink (4)3n 104-105 90 Colourless (4)3o 100 92 Pink (4)3p 135 91 Light yellow (2)3q 86-87 90 Pink (4)3r 113-115 97 Pink (4)3s 124-125 70 Orange (3)3t 129 92 Colourless (3)4a 95 50 Yellow (5)4b 105 50 Yellow (2)4c 89 45 Colourless (4)4d 128 50 Pale yellow (2)4e 85 55 Colourless (5)4f 90 72 Colourless (2)4g 85 60 Colourless (4)4h 106 72 Yellow (2)5a 100 82 Colourless (4)5b 101 83 Colourless (4)5c 90 65 Colourless (4)5d 98 80 Colourless (4)7a 199-200 60 Yellow (2)7b 115-116 50 Pale yellow (2)7c 102-105 60 Yellow (4)Compd. Elemental analysis (%) Found (cald) C H N3a 74.91 (75.00) 5.89 (5.76) --3b 69.20 (69.25) 5.15 (5.10) --3c 62.90 (63.04) 4.68 (4.64) --3d 67.64 (67.67) 5.03 (4.98) 3.07 (3.03)3e 72.18 (72.22) 5.49 (5.55) --3f 66.85 (66.88) 4.91 (4.93) --3g 61.00 (61.06) 4.54 (4.50) --3h 65.37 (65.40) 4.79 (4.82) 2.90 (2.93)3i 75.31 (75.35) 6.07 (6.04) --3j 69.78 (69.75) 5.36 (5.38) --3k 63.68 (63.66) 4.98 (4.91) --3l 68.24 (68.26) 5.29 (5.25) 2.99 (2.94)3m 75.69 (75.67) 6.22 (6.30) --3n 70.10 (70.21) 5.53 (5.64) --3o 64.10 (64.13) 5.19 (5.15) --3p 68.64 (68.71) 5.54 (5.52) 2.71 (2.86)3q 76.07 (75.98) 6.61 (6.55) --3r 70.59 (70.65) 5.82 (5.88) --3s 65.85 (64.81) 5.33 (5.40) --3t 69.02 (69.18) 5.69 (5.76) 2.88 (2.78)4a 72.47 (72.38) 5.84 (5.80) 3.24 (3.29)4b 67.08 (67.02) 5.19 (5.15) 3.10 (3.00)4c 61.00 (61.18) 4.59 (4.70) 2.78 (2.74)4d 65.58 (65.54) 4.89 (5.03) 5.80 (5.88)4e 72.52 (72.80) 6.27 (6.06) 3.26 (3.14)4f 67.52 (67.57) 5.57 (5.42) 2.99 (2.91)4g 61.87 (61.84) 4.95 (4.96) 2.78 (2.67)4h 66.19 (66.12) 5.58 (5.30) 5.60 (5.71)5a 69.78 (69.64) 5.29 (5.35) --5b 64.40 (64.66) 4.82 (4.76) --5c 69.89 (70.12) 5.54 (5.62) --5d 65.00 (65.25) 5.13 (5.03) --7a 60.15 (60.36) 5.13 (5.03) 5.29 (5.63)7b 61.73 (61.06) 5.17 (5.28) 5.53 (5.48)7c 61.77 (61.72) 5.47 (5.52) 5.02 (5.53)* Solvent used for recrystalization (1) acetone +methanol (1:3; v/v) (2) ethanol + benzene (1:1; v/v)(3) methanol (4) ethanol (80%) (5) Benzene + petroleumether ((40-60) (1:1 v/v).
COPYRIGHT 2012 Universidade Federal de Mato Grosso do Sul
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2012 Gale, Cengage Learning. All rights reserved.